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Abstract 

The energy transfer equations are used to solve 
secondary extinction in a parallel-sided crystal slab in 
Laue geometry. Practical formulas are given for 
determination of the refiectivity per unit length, tr(e), 
from the measured absolute powers of the diffracted 
and direct beams at rocking angle e = 0 -  0 B. The 
calculation assumes non-divergent beams, and the 
experimental tolerances are considered in detail. The 
primary extinction factor is defined by yp(e) = 
a(e)/Okin(e), where aki n is the kinematical reflectivity. 
When yp > 0.5 it may be approximated by yp ~_ 
exp[-(at~)2], where a is about 0.5 and fi is the average 
size of the coherent domains when measured in units of 
the extinction distance A, fi = D/A. The extinction 
distance can be varied by changing the X-ray wave- 
length or polarization, and yp(e) can be determined 
from two measurements. 

1. Introduction 

The explicit methods of counting for the defect 
structures of real crystals in X-ray and neutron 
diffraction have been based on the concept of mosaic 
crystal and energy transfer equations (Hamilton, 1957, 
Zachariasen, 1967; Cooper & Rouse, 1970; Coppens 
& Hamilton, 1970; Becker & Coppens, 1974a,b, 1975), 
although this has been realized to be an oversimplified 
approach, which can cover secondary extinction only 
(Werner, 1969, 1974). However, in recent years there 
has been considerable theoretical effort to bridge the 
gap between the infinite perfect crystal and the ideally 
imperfect mosaic crystal with more realistic cal- 
culations (Afanas'ev & Kohn, 1971; Kato, 1976a,b, 
1979, 1980a,b,c). The basic difficulty with all 
theoretical calculations is that these use parameters 
which are inherently non-observable or are derived 
from specific geometrical models. 

The practical procedures for making extinction 
corrections to the observed intensities of an X-ray or 
neutron diffraction measurement are based on least- 
squares fitting to the intensities which are calculated 

0567-7394/82/050642-06501.00 

from a crystal model. The model includes theoretical 
structure factors and extinction parameters, which are 
highly correlated, and this may introduce artefacts as 
demonstrated by a few representative examples (Kil- 
lean, Lawrence & Sharma, 1972; Cooper & Rouse, 
1976; Lawrence, 1977; Schneider, 1977). At any rate, 
the results derived from various fitting schemes do not 
provide direct evidence of the validity of the theory. 

The direct experimental approaches to the problem 
of extinction introduce corrections deduced from the 
reflection profile or are based on an extrapolation to the 
kinematical, zero interaction limit. The latter approach 
is discussed at length by Mathieson (1979), who 
classifies the methods as general, where the reflectivity 
per unit volume, Q, is reduced towards zero, and 
special, where the active volume of interaction is 
decreased. 

Reflectivity is proportional to /i 3, where /l is the 
X-ray wavelength, and 'extinction-free' structure fac- 
tors have been measured using energetic ),-rays 
(Schneider, 1977). Another extrapolation to Q = 0 is 
achieved by making the measurements with radiation 
polarized in the plane of diffraction and tuning the 
wavelength so as to make the scattering angle 
20 ~_ 90°; this is becoming feasible at the synchroton 
radiation sources (Mathieson, 1977a). The dependence 
of the integrated reflection on the polarization factor 
has been used also for determination of the parameters 
of Zachariasen's model (Chandrasekhar, Ramaseshan 
& Singh, 1969). 

Changing the active volume is the traditional method 
of tackling extinction (James, 1962, ch. VI), and the 
recent variations include asymmetric Bragg reflection 
(Mathieson, 1977b) and tilting the crystal about the 
scattering vector in the symmetrical Laue case 
(Lawrence & Mathieson, 1977). Also, spreading the 
reflecting power diffusely in reciprocal space may be 
included in this category, and in addition to mechanical 
introduction of strains in the crystal radiation defects 
(Sanger, 1969) and thermal gradients (Seiler & Dunitz, 
1978) have also been employed. 

The information contained in the reflection profile 
has been used in a synthesizing method (Bradaczek & 
Hosemann, 1968; Urban & Hosemann, 1972), which 
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includes a parametrized extinction model, and in a 
direct determination of secondary extinction from 
energy conservation (DeMarco, 1967). 

Several of the above methods have proved adequate 
for finding corrections for secondary extinction. 
Primary extinction can be eliminated at the limit of zero 
interaction, but this means by definition very weak 
intensities and often also cumbersome measurements. 
However, the recent theoretical formulations include 
measures of primary extinction which can be related to 
experimental quantities. The basic idea of the present 
work is to determine secondary extinction from the 
energy transfer equations and extrapolate to negligible 
primary extinction by varying the factors that deter- 
mine the amplitude coupling between coherent waves. 
The recent theories of extinction are reformulated using 
only parameters which are observable in a typical 
diffraction experiment. 

2. Transfer equations 

(a) Amplitude coupling 

When one diffracted wave of displacement Dg is 
excited by the direct wave D a, transfer equations of 
Takagi-Taupin type can be written as (Takagi, 1962, 
1969; Taupin, 1964) 

?Da 
- iK_gDg exp{iG(sa,sg)} = ix_gDg ~O(Sa,Sg) ( la)  

~s a 

?Dg 
- iKg D a exp {-iG(sa,sg) } = iKg D a ~o* (Sa,Sg) ( 1 b) 

Osg 

with 

K g = ( 2 C / V c ) r ¢ F g  , (lc) 

where C is the polarization factor (cos 28 when the 
electric vector is in the plane of diffraction, 1 when 
perpendicular to that), V C the unit-cell volume, r e = 
e2/mc 2 the electron scattering length, and Fg the 
structure factor. The equations apply to distorted 
crystals as the lattice phase is given by G = 2rig.u, 
where g is the scattering vector and u the lattice 
distortion. Position in the crystal is given by the oblique 
coordinates (sa,sg) along the direct and diffracted 
beams, respectively. 

A statistically homogeneous crystal can be charac- 
terized by two parameters: the average lattice phase 
(q~) = H is a measure of the long-range perfection, and 
the intrinsic correlation length r is related to the 
short-range perfection (Kato, 1980b). A narrow wave 
which enters the crystal is split into two coherent 
waves, but these become incoherent when there is an 
irrevocable change in G. In the terminology introduced 
by Kato (1980b), the respective intensity fields leave 
the coherent channel. It is worth noting that local 

distortion (such as thermal vibration) does not break 
the coherence of the waves, if the crystal is perfect as a 
whole. The volume where the wave coherence prevails 
is called the coherent domain, and it is determined 
either by the edges of the crystal or by changes in G. It 
is seen in Fig. 1 that the maximum area of coherent 
coupling between the waves is 2SdSsSin 8, and the 
appropriate average is found by an integration over the 
exit surface. The 'size' of the coherent domain, as seen 
by this particular wave, may be defined as 

D = (s  d Sg) 112. (2) 

Explicit calculation is possible for a given cross 
section of a perfect crystal, and detailed results are 
available for square and circular shapes (Olekhnovich 
& Olekhnovich, 1978, 1980). If the incoming ray is 
taken as a plane wave, reflectivity curves R(e), where 
e = 0 - 0 B is the deviation from the Bragg angle, can be 
calculated. The result can be expressed in Bessel 
functions of even orders, and the argument of the 
functions is proportional to Kg D. The detailed form of 
R(e) depends on the crystal shape, and even for a given 
shape there is no simple relationship between R(e) and 
KgD. On the other hand, the integral of R(e) is well 
defined by KgD, and this will be utilized in the 
following. 

(b) Intensity coupling 

Consider now two plane waves of unit amplitude and 
lateral width which enter the crystalline medium at an 
angle e = 0 -  08. The waves have an arbitrary phase 

(1) (2) 
%%. / 

Fig. 1. Laue diffraction from a parallel-sided crystal slab. A 
coherent domain with a constant lattice phase G deviates from 
the average orientation, which is indicated by broken lines, by an 
angle q. The direction of the incident narrow wave, s 0, makes the 
angle t; with ~0 which corresponds to the center of the reflection. 
Position in the crystal is measured along the direct and diffracted 
beams by s a and sg, respectively, and the area shaded with dots 
indicates the region of coherent coupling for the waves which 
enter G at A and exit at B. The region of interaction for two 
incoherent waves (1) and (2) is indicated by the area shaded with 
broken l ines. .  
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difference, and at each point the energy transfer 
equations hold, 

cgP a 
- "# iePd  + O_g Pg (3a) 

c3s a 

OPg 
- -#iePg + tTgP e. (3b) 

COS g 

If we assume a non-polar crystal, trg -- e g, and ignore 
the possibility of the Borrmann effect, 

#~ = #0 + e, (4) 

where o = o(e, Sa,Sg) is the reflectivity per unit length of 
the traversed crystalline medium and #0 the linear 
absorption coefficient. The region of interaction is that 
where the intensity fields of the two, originally narrow, 
waves overlap and where a ~e 0 (Fig. 1). In the regions 
where a = 0 the equations reduce to those of normal 
absorption. The observable reflectivity a(e) is the 
integral of a(e,Sa,Sg) over the region of interaction for 
the extended incident beam, and the integrated intensity 
is found by an angular integration. 

3. Primary extinction 

The coherent domain size, as defined in (2), does not 
refer to the mosaic-crystal model, but it rather 
measures the spatial extent of the amplitude coupling. 
However, for the sake of concreteness, it is useful to 
think of a crystallite of size D, which deviates from the 
average orientation of the crystallites by an angle r/. 
The crystallites of this size have an average reflectivity 
curve RD(O/), where ~, is the angle from the normal of 
the reflecting planes. An extended beam, which makes 
an angle e with the direction of average orientation, 
sees a (normalized) distribution of crystallite sizes, 
wo(rl), and the contribution to the reflectivity of the 
crystal may be written as 

cr,,(e) = f R o ( c -  ,1) wo(,7) d~. (5) 

In the following we will consider in detail cases where 
w o varies with angle much slower than RD, and in that 
case 

(r.(~) = wo(c) f R,,(~) d~. (6) 

This formulation implies that there is a representative 
distribution of R D as a function of the orientation angle 
r/. It is more realistic to define oo(e) in a small range of 
angles of incidence where Ro(e - ri) differs from zero, 

1 

a, (7) 
= Q.v,,(D) WD(e), 

where Q = (k/sin 20B)lxgl z is the integrated diffracted 
power per unit volume, and yp(D) < 1 is the primary 
extinction factor. We are interested in cases where 

primary extinction is appreciable, say yp(D) < 0-99, 
and model calculations show that the width of the 
corresponding Ro(~)  is very small. According to the 
calculations by Olekhnovich & Olekhnovich (1978, 
1980), at this limit Ae ~_ 10/ll Kgl, and typically Ae is 0.1 
to 1 mrad. This range is usually covered by the beam 
divergences and/or continuous rocking of the crystal. 
Under these conditions, the observable reflectivity of 
the crystal is 

e(e) = Q f yp(D) wo(e)dD. (8) 

It was mentioned earlier that the expressions of 
reflectivity involve low-order Bessel functions. For 
instance, in the Laue case of Fig. 1 the coherent 
intensity field at (Sa,Sg)is (Kato, 1980c) 

Ig = H21Kgl21Jo[2KgH(SdSg)I/2]I 2 exp{-#C(Sa + sg)}, (9) 

where J0 is the Bessel function of zeroth order, and #e c 
the effective absorption coefficient for coherent inten- 
sity fields. For a perfect crystal, H is just the 
Debye-Waller factor exp(-M),  and we define the 
extinction distance A by 

2C 
A -1 = KgH = ~ r e F g n  (10) 

Vc 

(note the small difference from the definition by Kato, 
1980b). The arguments of the intensity expressions 
become linear in the size of the coherent domain, when 
this is measured in units of A, 

2C 
6 = D / A = ( S a S g ) l / 2 T r e F g H .  (11) 

The effective size of the coherent domain can be varied 
by changing 2, C or Fg, and this gives an experimental 
possibility for determination of primary extinction. 

At small enough values of 6 it follows from the 
properties of J2n that 

yp(6)= Q - l . l R ~ ( ~ ) d ~ _  exp{-(ot6)2}, (12) 

where the numerical value of a is about 0.5. According 
to model calculations this approximation is valid when 
& < 1.5 or yp > 0.5 (Olekhnovich & Olekhnovich, 
1978, 1980). 

The primary extinction factor at a given average 
angle of incidence is weighted by the distribution of the 
domain sizes, 

yp(e)w(e) =.f yp(6)w[~(e)] d 6 =  Q-l a(e). (13) 

If we assume that w[3(e)] is a Gaussian of width 2AE, 
centered at 6,, convolution resulting from substitution 
of (12) into (13) yields 

yp(6) = exp{--(ac~)2/(1 + ctV/-2A,) 2 } = exp{--(a' 3,)2}. 

(14) 
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Although idealized, this calculation suggests that the 
functional form of (12) can be used also for real 
crystals. The working formulas for the actual deter- 
mination ofyp(e) will be based on this approximation. 

4. Secondary extinction 

The energy transfer equations (3) can be solved for 
given boundary conditions and a(e). In the present 
work we will use Laue diffraction from a parallel-sided 
crystal of thickness T. In the symmetrical Laue case the 
diffracted power is (Zachariasen, 1945) 

where 

P*(e) = ½P0 exp(-g0 T/cos 0) 

x { 1 - expi-2a(e) T/cos 0l} 

~Pg(e)/{ 1 + r (e)  + . ] [ r (e) ]2} ,  
(15a) 

Pg(e) = Po exp(-g0 T/cos 0) r(e) (15b) 

is the diffracted power as corrected for secondary 
extinction, and r(e) = a(e)T/cos 0. The direct beam 
can be solved from the equations as well, 

P,~(e) = Po exp (-g0 T/cos (9) - P*(e) (16a) 

~_Poexp( -goT /cos  0)/{1 + r(c)}, (16b) 

where the expression emphasizes the energy con- 
servation. The series expansions are valid to second 
order in r(e). 

If the effects of primary extinction are negligible, 

J Ro(e -- q) de = Q (17) 

for all values of D. From (5) we obtain the kinematical 
reflectivity 

akin(e ) = J J R o ( e -  ~l)wo(rl)dtldD 

= f R(e -- rl) w(r/) dr/, (18) 

where R(e - rl) is the average reflectivity of the 
domains oriented in an angle r/, and w(r/) is the 
normalized abundance of these domains. In his theory 
for secondary extinction, Zachariasen (1967) dis- 
tinguishes two cases on the basis of the wider, 
dominant distribution, 

akin(t) = Qw(e) type I (19a) 

akin(C) = R(e) type II. (19b) 

The integrated intensity is found by an angular 
integration over the rocking angle of the crystal. In the 
symmetrical Laue case 

1 • de 1 
E = - -  [ Pg(e) - exp (--g0 T/cos O) f r(e) de. 

Po J 09 o9 

(20a) 

If only secondary extinction is present, E can be related 
to the structure factor through the kinematical 
expression 

Q T 
Eki . - - -  exp (--go T/cos 0). (20b) 

oJ cos 0 

5. Discuss ion  

The above formulation of the primary- and secondary- 
extinction effects involves a few assumptions which 
deserve closer discussion. These are related to the 
practical realization of the method and to a description 
of the crystal with distribution functions. 

(a) Primary extinction 

The case where primary extinction is appreciable 
was separated from (5) by the assumption that the 
reflectivity curves RD(~,) of the responsible coherent 
domains are narrow in comparison with the total 
angular width of the reflection. This is only a matter of 
concreteness, as the convolution can be retained 
through (6) to (8), but the calculation gives estimates of 
the beam divergences that do not smear the effects of 
primary extinction. 

The estimation of primary extinction is based on a 
simple relationship between the extinction factor yp and 
the domain size. The approximation may be valid for 
yp > 0.5, but the functional form (12) is smeared by the 
size distribution. A Gaussian distribution retains the 
form (12), but in the case of a real crystal the 
performance of the approximation can be judged only 
by the consistency of the results. 

(b) Inhomogeneity o f  a(e) 

The correction for secondary extinction was 
evaluated for a parallel-sided crystal slab in the 

@ (1) 

Fig. 2. 'Serial' and 'parallel' coupling of rays. For the ray (1) 
entering the crystal at A and exiting at B the reflecting domains 
within the shaded area are coupled 'in series', while the domain 
seen by the ray (2) is 'in parallel' with the domains experienced 
by (1). 
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symmetrical Laue geometry. The calculation involves 
the use of the average reflectivity tr(e) for the whole 
direct and reflected X-ray beams. In the actual case the 
reflectivity experienced by the elemental rays varies, 
and the average should be calculated over the exit beam 
as counted by a detector. The conditions of homo- 
geneity for a type-I crystal have been recently discussed 
by Mazzone (1981), and Schneider (1975) has demon- 
strated the effects of an inhomogeneous a(e, Sd,Sg) on 
the diffracted intensity. This calculation can be 
generalized by terming the reflecting domains in the 
crystal as being 'in series' or 'in parallel'; see Fig. 2. For 
a ray travelling in the shaded area the total reflecting 
ratio r~(e) is the sum of elemental reflecting ratios 
(~F(e, Sd,Sg ) -~ a(e ,  Sd,Sg ). 6T(Sd,Sg)/COS O, i.e. the effec- 
tive reflectivity is the average reflectivity tr(e) taken 
over the area of'serial coupling'. 

The intensities of 'parallel' rays are added, and from 
(15a) 

\-- P g ,  i = ½Po exp(--/t0 T(cos 0) ~ {1 - exp(-2ri,o)}. 

(21) 

Writing ri. o = ? + Ari, a and expanding in power series 

) '  Pg, i = ½Po exp (--/t o T/cos 0) { 1 -- exp (--2r) 

x [1 + X ½(2Ari, p)2]}. (22) 

Accordingly, the 'parallel' inhomogeneities of tX(e, Sd,Sg) 
increase the effects of secondary extinction, and the 
reflectivity calculated from (15) and (16) remains 
smaller than the actual average a(e). The structure 
factor F is related to the average reflectivity through 
(20a), and so the inhomogeneities of tr(e) make the 
calculated values the lower bounds for F. 

(c) Divergences o f  the beams 

The reflectivity a(e) refers to beams of parallel rays, 
and in the energy transfer equations (3) tr(e) is taken to 
be the same for direct and reflected beams. The 
divergences of the beams change in successive reflec- 
tions, as illustrated by the Ewald construction in Fig. 3. 
The width of the reflecting domain in reciprocal space, 
i.e. the dimension perpendicular to S = sg - s d, is 
determined by the orientation distribution of the 
reflecting crystallites, and the length (parallel to S) by 
the thickness distribution of the crystallites. The power 
and the divergences of the reflected beam are deter- 
mined by the section cut from the domain by the Ewald 
sphere. The figure shows the case of a low-angle 
reflection, which is of interest in a study of extinction 
effects. The inserts show the convolution by the beam 
divergence, and it is clear that the active volume of the 
reflecting domain increases in successive reflections. In 
a type-I crystal this is not substantial, and the figure 
even shows how the divergence of the incident beam 
could be retained by matching it to the length of the 

domain; this corresponds to the averaging discussed in 
§ 3. In a type-II crystal the effective reflectivity already 
in the second reflection is rather the reflectivity 
averaged over the domain. 

The above situation was recognized already by 
Darwin (1922), and the necessary modification of the 
transfer equations is discussed by Werner (1974). If the 
reflectivity is small, it can be taken as o(e) for the direct 
beam, Crer r for the reflected beam, and an approximate 
solution in the symmetrical Laue case is 

Pal(e) = Po exp(--/t0 T/cos 0)/{ 1 + ½[r(e) + rer f] }. (23) 

If ref r is defined by .l r(e)de  = Aerer r, the integrated 
reflection from (20a) remains unchanged. 

The problems of divergences are avoided when the 
incident beam is a spherical wave. There is no delicate 
double integration due to the angular scan and the 
convolution by the beam divergences, as pointed out by 
Kato (1980a). A first-order correction for secondary 
extinction would still be possible using the present 
method, as seen from (16) and (20), but only an 
approximate correction which assumes a constant yp 
would be possible when the extinction distance is 
varied. 

(d) General  comments  

A simple closed-form solution of the energy transfer 
equations is available only for a parallel-sided crystal in 

~ / -  tL 

0 / 
(a) 

(b) 
Fig. 3. Ewald construction for diffraction from (a) a type-I crystal 

and (b) a type-II crystal. The broken lines in (a) show the effect 
of variation of the incident-beam direction. The inserts illustrate 
the active volume of the diffraction domain, when A¢ is the 
divergence of the incident beam. In (a) Ae can be matched to the 
length of the diffraction domain (along S) to make the divergence 
of the diffracted beam, d~:~, equal to A¢, while in (b) A~:~ is large 
enough to cover the whole diffraction domain in the next 
reflection. 
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Laue geometry, but an iterative solution can be 
presumably found for any simple polyhedral crystal, 
when the so-called AB-extinction formulas of Werner 
(1974) are used. The present experimental correction 
for secondary extinction requires an absolute measure- 
ment of the transmitted intensity. This is difficult to 
measure when the crystal is bathed in the incident 
beam, while a measurement of the total transmitted 
power is sufficient for a crystal slab which intercepts 
the beam. 

The evaluation of atomic scattering factors from the 
integrated reflections is based on the assumption that 
all elastic scattering is concentrated in the Bragg 
reflections. In other words, all atoms in the irradiated 
volume should belong to an environment where 
translational invariance holds over a sufficient range. 
The simplest model for such a crystal is the mosaic 
crystal, but it excludes lattice defects that occur in real 
crystals. A diffraction measurement should therefore 
commence with careful tests of background scattering, 
as the intensity outside the Bragg reflections should be 
due to inelastic scattering only. This requires extensive 
calculations of the scattering cross sections and a 
measurement of the incident beam power. It has been 
demonstrated (Suortti & Jennings, 1977) that the 
amorphous scattering can be appreciable in powders, 
and it is not clear without careful checks that the total 
irradiated volume of a single crystal contributes to the 
observed integral reflection. 
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